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Traumatic spinal cord injury (SCI) is an irreversible dramatic
event that can incapacitate victims for life.1�4 Although the

incidence is relatively low, the often severe disability that follows
and the fact that the victims are often young people, the
consequences for the patient is severe and the impact on societal
costs is significant. The injury is the result of a primary event due
to contusive, compressive, or stretch injury,1,2,5 followed by the
so-called “secondary injury”, commonly considered the main
cause of the post-traumatic neural degeneration of the cord
itself.6�8 Functional deficits of SCI are caused by different
temporal events: spinal cord compression and/or contusion lead
to ischemic events that limit both oxygen and glucose contribution
to the tissue, with concomitant neuronal cell death, axon damage,
and demyelination.5 Subsequently, glial activation, release of in-
flammatory factors and cytokines, and scar formation that impedes
axons to regrow8,9 aggravate the progression of the damage.

SCI research is following two principal paths.6,9�11 The first
one, already applied in human cases, is based on systemic phar-
macological treatments in order to contain side effects (ischemia,
free radical release, and inflammation) using neuroprotective
drugs (such as corticosteroids)12�14 and to promote self-regen-
eration using stimulating factors.15 The second one relies on
tissue engineering16�18 approaches such as the direct injection of
stem cells19�21 and active agents (drugs, antibodies, and pep-
tides) into the affected area with the aim to bridge the lesion,
possibly after removal of the glial scar or reducing endogenous
neurite-inhibitory molecules.22,23 Direct injection of in vitro
cultured cells or drugs is the most common choice, but keeping
transplanted cells in the lesion area is often desired as transplanted

cells readily leave the zone of injection if not confined by any
support. To achieve this, a new potential approach is to combine
material science with tissue engineering as has been proposed
and developed.16,24�26 In Figure 1 are presented classic tissue
engineering approaches as the combination of scaffolds with cells
and active agents in order to replace damaged parts of biological
tissues.17,18

In the wide field of biomaterials, increased attention is given to
polymers, not only to fabricate three-dimensional scaffolds but
also to develop injectable systems for tissue engineering.26�34

One of the most suitable classes of compounds for these
purposes is surely represented by hydrogels.16,28,31,35�39 These
polymers are typically soft and elastic due to their thermody-
namic compatibility with water.16,33,36,40 They can be designed as
temporary structures having desired geometry and physical,
chemical, and mechanical properties adequate for implantation
into chosen target tissue.6,41�43

The aim of this Review is to show the different types of
hydrogels used as scaffolds for SCI repair strategies. We on
purpose decided to focus our attention only on the past few years,
in order to show the most promising and recent perspectives in
this field. Indeed, the rapid expansion of nanotechnology during
the last years has led to new perspectives and advances in
biomedical research as well as in clinical practice.7
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ABSTRACT: Nowadays there are at present no efficient therapies for
spinal cord injury (SCI), and new approaches have to be proposed.
Recently, a new regenerative medicine strategy has been suggested
using smart biomaterials able to carry and deliver cells and/or drugs in
the damaged spinal cord. Among the wide field of emerging materials,
research has been focused on hydrogels, three-dimensional polymeric
networks able to swell and absorb a large amount of water. The present
paper intends to give an overview of a wide range of natural, synthetic,
and composite hydrogels with particular efforts for the ones studied in
the last five years. Here, different hydrogel applications are underlined,
together with their different nature, in order to have a clearer view of
what is happening in one of the most sparkling fields of regenerative medicine.
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’HYDROGELS

The physical aspects of scaffold design, as with polymer
choice, depend largely on the application. The scaffold is meant
to provide the appropriate chemical, physical, and mechanical
properties required for cell survival and tissue formation.35,36,40

Essentially, the polymeric scaffold is designed to define the
cellular microenvironment required for optimal function. In-
deed, in the wide field of biopolymers,20,44,45 one of the most
suitable classes for these purposes is represented by hydrogels.
They are three-dimensional (3D) networks of hydrophilic poly-
mers held together by covalent bonds or other cohesive forces
such as hydrogen or ionic bonds.36,46�48

They are glassy in the dry state and then, in the presence of
solvents, able to swell while preserving their original shape to
form elastic gels. Capable to retain a large amount of water in
their structure (up to 95% of the total weight), they can either
degrade in it by polymer chain degradation reactions (e.g.,
hydrolysis or proteolysis into smaller molecules) and are then
called resorbable hydrogels, or they cannot and are then called
stable hydrogels.35,36 These scaffolds slowly degrade in the phy-
siological environment, leading the growing tissue to replace the
former filled site.46 An important advantage is the possibility to
minimize the risks of surgical procedures due to their injectability
and ability to create a 3D network in situ, in the target tissue.26,35

In general, hydrogels may be classified as either synthetic or
natural in origin. On one hand, synthetic polymers can be tuned
in terms of composition, rate of degradation, and mechanical and
chemical properties.49,50 On the other hand, naturally derived
polymers provide structures extremely similar to living tissues
such as stimulating a specific cellular response, which sometimes
supersedes the advantages of synthetic polymers. Moreover,
owing to their similarity with the extracellular matrix (ECM),
natural polymers may also reduce the stimulation of chronic
inflammation or immunological reactions and toxicity, often
detected with synthetic polymers.51,52 However, this is not true
for every natural-derived polymer; the ones from nonmammalian
sources (e.g., seaweed and crustaceans) can induce immune
reactions. Moreover, even mammalian hydrogels (e.g., those
collagen-based), if raw materials are improperly harvested from
some species, might induce immune reactions in humans.

Thus, different reasons make the above-mentioned biomate-
rials very attractive for improving tissue regeneration and central
nervous system (CNS) repair:45 (i) tissuelike mechanical abil-
ities, conformable to the CNS tissue;43,53 (ii) porous structure
allowing cell infiltration, transplantation, and axon outgrowth;53

(iii) ability to incorporate adhesion and/or growth-promoting
molecules in the hydrogel to enhance cell attachment and tissue
growth;54 (iv) capacity of drug/gene vector incorporation and
precise in situ delivery.38,42,55,56

In order to make a comprehensive overview of their use in
spinal cord injury repair strategies we decided to classify hydro-
gels on the basis of the following.
Nature: natural, synthetic, or a combination of the two.49,50

Function: drug or cell carriers or a combination of the
two.24,39,57

1. Natural Derived Hydrogels. In order to follow the
similarities between the implanted materials and the living tissue,
researchers studied the possibility to synthesize hydrogels start-
ing from molecules present in living tissues. In particular, the
most suitable are collagen, hyaluronic acid (HA), and polysac-
charides (agarose, alginate, cellulose, gellan gum, scleroglucan,
and xyloglucan). Although regenerative axonal growth occurs in
a liquified spinal cord lesion cavity without obvious physical
support,58 regeneration is facilitated by a supporting scaffold
equivalent to the endoneurium and perineurium in a peripheral
nerve, that can act as a bridge in order to approximate the
disconnected axonal groups for the damaged area.43,53 The aim
of using hydrogel is to replace the damaged area with a structural
matrix.24,51

As explained before, naturally derivedmacromers and their use
have increased in the past few years due to inherent biocompati-
bility and enzymatic degradation.49 They are macroporous, soft
materials able to allow cell adhesion and migration.50 Moreover,
they can be manipulated in order to obtain channels for nerve
guidance or sustained drug delivery. Table 1 presents in detail the
main natural polymers and highlights examples of their SCI
application. For the sake of clarity, it is useful to briefly comment
on Table 1. Following most promising regenerative medicine
approaches toward other pathologies, also several recent studies
in SCI repair are combining hydrogels with stem cells in order to
provide in situ cell delivery. In these applications, hydrogels are
used as 3D cell growth matrices and cell reservoirs. Hence, it has
to be underlined that not only materials but also stem cell
choice are key points in the regeneration strategies: indeed,
researchers are mostly focusing their attention on pluripotent
stem cells (embryonic)59,60 or multipotent ones (mesenchymal or
neural).38,61�69Natural hydrogels used for this purpose are either
synthesized starting from polysaccharides such as alginate59,66,69

and hyaluronic acid as homopolymer62,65 or copolymerized with
methylcellulose,61 cellulose,63 and xyloglucan.60,67 Other materi-
als are also being investigated to support cell therapies: the
commercial Matrigel,38,69 fibrin,68 and gelatin.64 A dedicated
mention should be addressed to in vivo studies that already
showed functional improvement in animal models after hydrogel
implantation. In these studies, hydrogels, such as agarose70,71 or
alginate,72 were used as scaffolds able to support oriented axonal
regeneration. Moreover, with hydrogels being able to provide
controlled drug delivery to improve axonal regrowth, they can be
loaded with active substances such as chondroitinase ABC,73

methylprednisolone,74 or brain-derived neurotrophic factor
(BDNF).62,75

Figure 1. Tissue engineering approaches: the smart combination of
cells and materials to replace damaged or missing parts of living tissues.
Reproduced with permission from ref 16. Copyright Wiley-VCH Verlag
GmbH & Co. KGaA.
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2. Synthetic Hydrogels. Synthetic hydrogels, such as those
based on poly(hydroxyethyl methacrylate) (PHEMA), were
some of the earliest biomaterials used as tissue engineering
scaffolds.43,98 This class of materials shows very important
advantages in this field: easier large-scale production and highly
tunable properties.49 Both of them contributed to the large
number of formulations. In contraposition with the advantages
of the naturally derived hydrogels, synthetic polymers offer wider
scope to design and control the characteristics of the material.
Moreover, the possibility to reduce the allergenic risks using a
completely artificial biocompatible material devoid of animal
proteins is evident.98,99

The more recent use of hydrogels as cell carriers offers the
possibility to provide precise temporal control of the donor and
host cell interactions. The ability to carry cells in a matrix, initially
impermeable to cells, could afford donor cells protection from
potentially harmful substances such as cytotoxic cytokines imme-
diately after transplantation, being a barrier for their diffusion as
in the case of hydrogel based microcapsules.100�102 At later time
points, as the gel degrades and the overall mesh size of the gel
increases, donor cells will be delivered. Additionally, the gel
network can serve as a scaffold to support regeneration within the
host environment until the material is ultimately resorbed by the
tissue. The surface of the hydrogel could also be easily modified

or charged in order to favor cell attachment, or differentiation.
They can also be cross-linked with other polymers in a classic
block copolymerization in order to design smart delivery sys-
tems. Emblematic is the case of cyclodextrin, able to carry insolu-
ble drugs into water based systems. With respect to synthetic
formulations, care must be taken to ensure that contaminant and
unreacted reagents present during synthesis are completely
removed due to their possible toxicity. Details of synthetic
polymers used in SCI are presented in Table 2.
Briefly commenting on this second table, being that regen-

erative medicine is considered the future in life sciences, several
studies were performed to develop synthetic polymeric gels
showing full compatibility with stem cells. Stem cells are mainly
chosen between multipotent cell lines (mesenchymal and
neural)99,103�107 and pluripotent ones (embryonic).108 Synthe-
tic materials that seem to be extremely suitable as 3D growth
matrices are polymethacrylates, such as pHPMA and pHEMA,
which were tested with mesenchymal stem cells103 and also
showed relevant improvement in chronic spinal cord injury.103,109,110

In addition some studies, involving polymethacylates, underlined
relevant functional improvements on animals after hydrogel
implantation: pHEMA and pHPMA favor axonal ingrowth,111

showing also good outcome in chronic cases as said before,103

while pHEMA-MMA influences axonal regrowth.112�114 Stem

Table 1. Naturally Derived Hydrogels Used for SCI Repair

material description acronym application in SCI

agarose polysaccharide cell growth matrix74

encapsulation and delivery of neurotrophic factors14

controlled chondroitinase delivery73

support for nanoparticle delivery14,74

brain-derived neurotrophic factor (BDNF) controlled delivery75,76

linear guidance (freeze-dried)70,71

cell encapsulation for growthmatrix37

co-methylcellulose agarose/MC nerve guidance77

alginate polysaccharide anisotropic scaffold for axonal regrowth72

neural stem cell groth matrix66,69,78

embryonic stem cell growth matrix59

cellulose polysaccharide mesenchymal stem cell growth matrix63

chitosan polysaccharide scaffold for cell adhesion and growth with polylysine79

scaffold for neurite regrowth with hyaluronic acid80

collagen polypeptide polymeric channels81

filament bridges as growth substances82

cell growth matrix83,84

fibrin linked proteins neural stem cell growth matrix68

gelatin hydrolyzed collagen mesenchymal stem cell growth matrix64

gellan gum polysaccharide tubular, porous scaffold for axonal regrowth85

hyaluronic acid polysaccharide HA controlled delivery of neurotrophic factors62

scaffold for neurite regrowth65,80

controlled peptide delivery26,86,87

co-polylysine Nogo 66 receptor antibody delivery system88,89

co-methylcellulose HAMC intrathecal drug and growth factor delivery90�95

neural stem cell carrier for cell therapies61

co-collagen cell growth matrix96

Matrigel laminin, collagen IV, heparin scaffold supporting cell adhesion and growth38

neural stem cell carrier for cell therapies69

scleroglucan polysaccharide controlled drug delivery97

xyloglucan polysaccharide scaffold supporting cell adhesion and growth60,67
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cell studies were conducted also using poly(ethylene glycol)
(PEG) scaffold with neural,106,107 embryonic,108 or mesenchy-
mal stem cells104,105 and poly-ε-caprolactone with neural stem
cells.99

3. Synthetic�Natural Composite Hydrogels. The idea of
using natural macromers such as fibronectin, laminin, or agarose
in order to coat synthetic polymers to favor cell attachment and
viability has been suggested in tissue engineering concepts from
its very first description.17 However, in order to overcome
matters of only natural or only synthetic hydrogels, this sugges-
tion was dismissed, but now it has came back on the scene as one
of the novelties of the last three years where great importance has
been given to composite (synthetic�natural) hydrogels for
spinal cord injury repair strategies.28 They could be the result
of a block copolymerization between synthetic and natural
macromers, or just an interpolymer complex bonded by physical
interactions. The goal of this approach should be to combine the
biocompatibility of natural gels with the possibility to tune
mechanical and physical properties by the inclusion of synthetic
ones.137 For example, the adhesive properties could be in-
creased by adding polylysine to PEG channels, or chitosan to
methacrylamide. This strategy was also studied in order to
overcome the disadvantages of the “classic” 3D growth ma-
trices, increasing cell viability and biocompatibility as in the
case of agarose�Carbopol or hyaluronan�PEG. In these
studies, multipotent stem cell lines happear to be promising
great therapeutical advantages. Agarose�Carbopol hydro-
gels were tested with mesenchymal stem cells,138 while

chitosan�methacrylamide and PEG�polylysine hydrogels
were tested with neural ones.139�141The complete list of the
composite hydrogels used is presented in Table 3.
4. Patented Hydrogels. The field of materials for supporting

SCI repair strategies is not only scientifically very rich but also
very promising from an industrial point of view. Social and
economical impacts of impaired SCI patients are unluckily very
well-known, and the possibility to develop therapies toward
repair is definitely appealing for the industry. Indeed, patent
trends can be used as good indicators reflecting the increasing
business interests in a specific technological area. This is illu-
strated by the fact that about 80% of technical and scientific
knowledge generated worldwide is only published as patents and
not elsewhere.151

Looking into biomaterials for SCI repair strategies, the first
patent claiming the use of a hydrogel in SCI repair strategies dates
back no further than 1984,152while the oldest patent application on
a hydrogel was filed on 1966.153 An ever since cumulated snapshot,
taken today, accounts for just 44 patents on hydrogels for SCI
repair, out of about 4000 patents relating to hydrogels in general
(search performed with QPat). Nevertheless, looking at the filing
trend, the tremendous interest displayed in the scientific literature
in the last 5 years is also reflected onto intellectual property rights:
the same number of patent applications filed from 1984 to 2005
was filed only from 2006 up to today.
The same criteria applied in scientific literature was also used

to categorize claims on hydrogels based on their main components:
natural, synthetic, or both. As expected, the vast majority (71.5%)

Table 2. Synthetic Based Hydrogels Studied in SCI Research

material description acronym application in SCI

Carbopol branched poly(acrylic acid) controlled drug delivery with cyclodextrin115,116

lysine-leucine co-polypeptide DCH tunable vehicles for factor delivery117

polyacrylamide scaffold for neurite outgrowth118

polyalkylimide acrylates scaffold supporting cell adhesion and growth119

poly-ε-caprolactone polyester PCL nanofiber for axonal growth orientation99

poly(ethylene glycol) polyether PEG 3D cell growth matrix31,104,120�122

microcapsules for cell growth123

controlled drug delivery with cyclodextrin124

microvascular networks for cell growth

with PLGA105,107,108

controlled delivery of methylprednisolone125

PLA-b-PEG-b-PLA delivery of neurotrophins126�129

PNIPAA-PEG cell adhesion and neurotrophins release106

polyethylene oxide PEO injectable scaffold for drug delivery with cyclodextrin130

poly(hydroxethyl methacrylate) polyester PHEMA charged modified scaffold as bridges for

axonal growth98,111

guidance channels111,131

fiber templated scaffold132

bone marrow stem cell carrier for cell therapies109,110

co-methylmetahcrylate PHEMA-MMA reinforced guidance channels for nerve regrowth112�114

controlled drug delivery133

poly(hydroxypropyl methacrylate) polyester PHPMA mesenchymal stem cell growth matrix103

poly(N-isopropylacrylamide)-co-

polyvinylpyrrolidone

copolymer PNIPAA-PVP scaffold for controlled drug delivery134

Pluronic polypropylene oxide þ ethylene oxide PF127 scaffold supporting cell adhesion and growth38,135

PuraMatrix oligopeptides scaffold supporting cell adhesion and growth38

polyvynilalchol acetate PVA scaffold for controlled drug delivery136
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of applications claims the use of combined natural�synthetic
hydrogels,154�168 while natural169�172 or synthetic173,174 hydro-
gels only accounted for 19% and 9.5% of applications, respec-
tively. The industrial attitude is indeed generally pointing toward
the wider possible intellectual property protection, which in this
specific field is represented by combined solutions.
Lastly, a statistical study was performed on all applications

filed since 1984, to show the main geographic areas of protec-
tion. These data are shown in Figure 2 where the darker colors
illustrate a higher number of applications.

’CONCLUSIONS

It is increasingly recognized that cell or drug therapies alone
will not be sufficient for successful tissue engineering in many
CNS disorders and insults. For this reason, engineered scaf-
folds have gained greater interest in the last years. In particular,
spinal cord injury for its neuropathological features (loss of
neuronal tissue and presence of cavity) represents a good
candidate to develop an engineered scaffold able to carry sub-
stances (drugs, antibodies, peptides, or other proteins) and/or

cells. In this Review, we have given an overview of hydrogels
used for experimental SCI repair, since this is an expanding
field and most probably will be a useful applicable therapeutic
tool in the near future. In this way, medicine and engineering
work together to better define the promising therapies using
this hybrid knowledge to design and engineer better tissue
scaffolds.
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Table 3. Synthetic�Natural Composite Hydrogels Studied in SCI Research

material description acronym application in SCI

Carbopol þ agarose copolymer AC 3D mesenchymal stem cell growth matrix138

scaffold for controlled drug delivery142

Carbopol þ chitosan interpolymer complex IPC multiple drug delivery143

methacrylamide þ chitosan cross-linked polymer MC cell adhesion and neurite penetration140,144

neural stem cell growth matrix139

polyglycolic acid þ chitosan interpolymer complex chitosan/PGA bridge for neurite regrowth145

poly(ethylene glycol) þ hyaluronan interpolymer complex HA-DTPH-PEGDA 3D growth matrix146

poly(ethylene glycol)/polyacrylic acid/agarose layer PEG/PAA/agarose multilayer scaffold for BDNF controlled drug delivery147

poly(ethylene glycol) þ polylysine copolymer PEG/PLL cell growth matrix141

poly(ethylene glycol) þ polypeptides copolymer PEG/peptide 3D growth matrix148

polylactide-co-glycolic acid þ dex-lactate interpolymer complex DP,DS controlled protein release149

tetronic þ lactide þ heparin copolymer TL bridge, with antiinflammatory agents, for

axonal regeneration150

Figure 2. Geographical areas of intellectual property rights protection on hydrogels for SCi repair: darker colors illustrate a higher number of applications.
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